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Abstract

In this paper numerical results are reviewed ([13]) that demonstrate
that common second-order operator-splitting methods can exhibit insta-
bilities when integrating the Brusselator equations out to moderate times
of about seven periods of oscillation. These instabilities are manifested
as high wave number spatial errors. In this paper we further analyze this
problem and present a theorem for stability of operator-splitting meth-
ods applied to linear reaction-diffusion equations with indefinite reaction
terms which controls both low and high wave number instabilities. A
corollary shows that if L-stable methods are used for the diffusion term
the high wave number instability will be controlled more easily. In the
absence of L-stability, an additional time step condition that suppresses
the high wave number modes appears to guarantee convergence at the
asymptotic order for the operator-splitting method. Numerical results
for a model problem confirm this theory, and results for the Brusselator
problem agree as well.

1 Introduction

Operator splitting is a popular method for time integration. Also known as the
fractional step method, operator splitting originally developed as a technique
for splitting a multi-dimensional spatial operator into a sum of one-dimensional
operators in order to simplify the linear algebra [16]. Now it is more commonly
used to split different physical terms, such as reaction terms and diffusion terms;
see, e.g., [11]. While there are several variations of operator-splitting, here we

∗To appear in Journal of Computational Physics. This work was partially supported
by ASC program of DOE/NNSA and the DOE Office of Science MICS program at Sandia
National Laboratory. Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company for the United States Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

†Computational Mathematics & Algorithms Department, MS 1110, P.O. Box 5800, Sandia
National Laboratories, Albuquerque NM, 87185-1110 (dlropp@sandia.gov)

‡Computational Science Department, MS 0316, P.O. Box 5800, Sandia National Labora-
tories, Albuquerque NM, 87185-1111 (jnshadi@sandia.gov)

1



will focus on first- and second-order methods that split a multiple-term problem
into at set of single term equations. The most common second-order operator-
splitting methods of this type are those of Strang [14] and Marchuk [9].

In this paper we focus on systems with indefinite operators. The original
non-split systems may be negative definite or indefinite depending on the mag-
nitude of the contribution of the indefinite component operator. This focus was
motivated by the observed behavior of numerical solutions of the Brusselator
model using these operator-splitting methods. In an earlier study of time inte-
gration methods applied to reaction-diffusion systems ([13]), it was found that
when certain second-order operator-splitting methods are used to solve these
equations, an instability may arise. This instability is manifested through high
wave number oscillations that pollute the solution. This instability persists even
when using as many as 1000 time steps per period of oscillation. In contrast,
fully implicit methods applied to the full problem are demonstrated to be stable
for as few as three time steps per period.

Here we explore this instability further. We develop theorems that guar-
antee the stability of these operator-splitting methods applied to certain linear
reaction-diffusion equations with indefinite reaction operators. The conditions
for stability are simplified if low wave number modes always dominate high wave
number modes in the diffusion step, which is the case when the method used for
that step is L-stable and monotonic along the negative real axis. These results
are demonstrated numerically with a scalar model problem, and are also shown
to accurately describe the stability behavior of second-order operator-splitting
methods applied to the Brusselator problem.

Stability for operator splitting methods has been studied before in the con-
text of negative definite systems; see, e.g., [3], [5], and [7]. See [6] for a good
review of stability results for a variety of operator-splitting methods. In [3]
problems of the form

du

dt
= A1u + · · ·+ ANu

are considered, with u ∈ Rm and Ai ∈ Rm×m, along with the condition that
each Ai is negative definite. An operator splitting method then defines an
amplification matrix R(∆tA1, . . . ,∆tAN ), and the conditions for A-stability
and L-stability are

‖R(∆tA1, . . . ,∆tAN )‖ ≤ 1 ∀∆t > 0 ,

and
lim

∆tµ[Ai]→−∞
‖R(∆tA1, . . . ,∆tAN )‖ = 0 , i = 1, . . . , N ,

where µ[Ai] is the logarithmic norm, defined for a suitable inner product. Here
we use this same definition of A-stability and extend the theory to include
systems where one or more of the Ai may be indefinite. We also extend these
definitions to the case of an indefinite system.
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2 Operator Splitting and the Brusselator Sys-
tem

The Brusselator equations, a coupled set of equations first introduced by Pri-
gogine and Lefever [12] as a model of chemical dynamics, are given by

∂T

∂t
= D1

∂2T

∂x2
+ α− (β + 1)T + T 2C , (1)

∂C

∂t
= D2

∂2C

∂x2
+ βT − T 2C , (2)

with the boundary conditions T (0, t) = T (1, t) = α and C(0, t) = C(1, t) = β
α .

Here T and C represent concentrations of different chemical species. For an
explanation of the reaction terms, see [12]. These equations admit steady state,
oscillatory and chaotic solutions. In our studies we consider parameter values
of α = 0.6, β = 2, and D1 = D2 = 1/40, which produce an equilibrium
solution with an oscillatory instability. With initial values of T = α + x(1− x)
and C = β

α + x2(1 − x), the resulting solution is oscillatory. We will use a
characteristic time scale τ of 12, which is approximately the period of oscillation.

We solve these equations numerically using operator-splitting methods to
advance the solution in time. Here we give an overview of the numerical imple-
mentation; for more details see [10] and [13].

In our implementation of operator splitting we first consider the system as

du

dt
= FD(u) + FR(u) , x ∈ Ω , t > 0 , (3a)

u = 0 , x ∈ ∂Ω , t > 0 . (3b)

In the above, u is the vector [T,C]T and FD(u) and FR(u) are the diffusion
and reaction terms. We then split the terms, creating two systems of equations.
Thus, a single step of a first-order splitting method advancing the solution from
tn to tn+1 = tn + ∆t amounts to an application of time discretizations applied
to the system

du∗

dt
= FR(u∗) on (tn, tn+1), u∗(tn) = un , (4a)

du∗∗

dt
= FD(u∗∗) on (tn, tn+1), u∗∗(tn) = u∗(tn+1) , (4b)

with un+1 = u∗∗(tn+1). Note that step (4a) has no spatial dependence and thus
is essentially an ordinary differential equation (ODE) at each node, requiring
no boundary conditions. Step (4b) does have spatial dependence, however, and
thus requires application of the boundary conditions stated above.

Using operator notation we denote the solution of the reaction step as u∗ =
S∆tu

n, and the solution of the diffusion step as u∗∗ = D∆tu
∗. Thus, the above

method can be written as un+1 = D∆tS∆tu
n. We will refer to this method as

First-order Splitting - Diffusion Reaction, or FS-DR.
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The above operator-splitting method is in general a first-order method. A
second-order method can be constructed by taking the above steps over the
first half of a time step, and then reversing those steps over the second half
of the time step. Using the above notation, this can be written as un+1 =
S∆t/2D∆tS∆t/2u

n. Known as Strang or Marchuk splitting, we shall refer to it
as Strang RDR for reaction-diffusion-reaction.

Within a step of either FS-DR or Strang RDR, we can choose how to in-
tegrate the reaction and diffusion steps. Because the reaction step has no ex-
plicit spatial dependence, it can be solved as a system of ODEs at each node.
These ODEs are time integrated using the CVODE library [1], which imple-
ments variable-order (up to 5th-order) BDF methods. The accuracy tolerances
are set very low so that the error within the step does not influence the overall
error of the splitting method. We allow sub-cycling for the reaction step; that
is, within one reaction step of FS-DR or Strang RDR we allow CVODE to take
several smaller steps to insure that this step produces a very accurate solution.
The diffusion step, solved globally, is integrated using a single step of a one-step
method, such as backward Euler or trapezoidal rule.

The spatial discretization is based on a finite element discretization of a
Galerkin formulation using a uniform grid of 500 elements with linear basis
functions. This results in a system identical to Equation (4) but with the
u, FR, and FD replaced by their discretized representations. The discretized
representations of FR and FD incorporate contributions from the mass matrix
of the transient term.

The error that we report here is the ratio of the L2 norm of the difference
of the numerical solution and a reference solution to the L2 norm of the refer-
ence solution. The reference solution is computed using two-point Richardson
extrapolation of solutions using a second-order fully-implicit method at the two
smallest values of ∆t.

3 Preliminary Experiments and Observations

We first summarize previously reported results. Figure 1 shows the norm of
the error of the solutions at t = 80 ≈ 6.7τ . Results are shown for FS-DR
using backward Euler for the diffusion term, Strang RDR using trapezoidal
rule for the diffusion term, and trapezoidal rule for the fully coupled system.
Both FS-DR and trapezoidal rule have good convergence for the entire range
of ∆t at their expected rates of convergence. For Strang RDR, however, there
is no convergence unless ∆t is sufficiently small. For ∆t small enough, the
convergence is second-order as expected and the error is almost two orders of
magnitude less than that of trapezoidal rule.

In fact if we look at the solution using Strang RDR we see that high wave
number oscillations have polluted the solution, suggesting an instability. This
is seen in Figure 2, which plots the solution using Strang RDR with ∆t = 1.6 =
0.13τ at t = 32 against a reference solution at this time. This behavior has been
discussed previously in [13]. Here we note that we need to use nearly 1000 time
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Figure 1: Temporal convergence FS-DR, Strang RDR, and trapezoidal at t =
80 ≈ 6.7τ (τ = 12). The dotted lines are references with first- and second-order
slopes.
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steps per period in order to get acceptable accuracy and convergence. This
is very restrictive, and suggests a fundamental problem in using this method
to solve this system of equations. In addition, as demonstrated in [13], these
methods exhibit very disturbing convergence behavior when both spatial and
temporal discretizations are considered. For example, for a fixed time step,
decreasing the mesh spacing can cause an increase in the error at moderate
integration times of 6.7τ .

This instability was also observed in [15], in which a model of chemotaxis
was studied. This paper did not come to the attention of the authors until after
the first draft of the current paper, so that model is not examined here.

If we compare the operator forms of FS-DR and Strang RDR, we have for
FS-DR

un = S∆tD∆tu
n−1 = S∆tD∆t · · ·S∆tD∆tu

0

= (S∆tD∆t)
n

u0 ,

while for Strang RDR we have

un = S∆t/2D∆tS∆t/2u
n−1 = S∆t/2D∆tS∆tD∆t · · ·D∆tS∆t/2u

0

= S∆t/2D∆t (S∆tD∆t)
n−1

S∆t/2u
0 .

Thus, with the exception of their starting and stopping steps, the order and
frequency of the split steps are equivalent for these two methods. We therefore
heuristically conclude that any difference in stability between the FS-DR and
Strang RDR methods is due to differences in stability of the methods used for
the split steps. Since the reaction steps are all solved with the same method,
we suspect that the stability of FS-DR is due to the backward Euler method’s
strong damping of high wave number modes in the diffusion step. Similarly, the
instability of Strang RDR may be due to the trapezoidal rule’s poor damping of
high wave number modes. Indeed, though not shown here, FS-DR is unstable if
the trapezoidal rule is used for diffusion, while Strang RDR is stable if backward
Euler is used for diffusion. We analyze the FS-DR method further in the next
section.

4 Stability of Operator-Splitting Methods: A-
stability

The definitions of stability we use here consider the linear system

du

dt
= λ , u(0) = u0 , (5)

where λ is a complex constant. After temporal discretization using a one-step
method, this equation becomes a difference equation of the form

un+1 = R(∆tλ)un , u0 = u0 .
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Here R(∆tλ), called the amplification factor, is determined by the method and
is typically a rational polynomial approximation of e∆tλ. For example, the
amplification factors for the backward Euler and trapezoidal rule methods are

RBE(z) = [1− z]−1
,

RTR(z) =
[
1− z

2

]−1 [
1 +

z

2
z
]

.

The scheme is considered absolutely stable, or A-stable, at a value z ∈ C if
|R(z)| ≤ 1. The set of values of z in the complex plane for which this is true
is called the A-stability region. In particular, a method is said to be A-stable
if its stability region includes the left half-plane, i.e., if |R(z)| ≤ 1 whenever
Re(z) ≤ 0. This ensures that, when using this method, modes in the numerical
solution will decay when the corresponding modes in the original problem decay
analytically. Examining the above amplification factors for backward Euler and
trapezoidal rule shows that both of these methods are A-stable. See, e.g., [8]
for further discussion.

Another useful stability concept is that of L-stability. Sometimes known
as strong A-stability or stiff A-stability, L-stability requires A-stability and the
condition that limz→−∞R(z) = 0. This ensures that the R has the correct
asymptotic behavior in the limit of large negative z. The backward Euler
method is L-stable, but the trapezoidal rule is not. In fact it is well known
that limz→−∞R(z) = −1 for trapezoidal rule and unphysical high wave num-
ber modes decay slowly.

We study the stability of a split system such as Equation (4) similarly. We
assume Equation (3) represents a system that has been spatially discretized, and
that the reaction and diffusion terms are linear, with Fα(u) = Aαu, α = D,R.
Then Equation (3) is written as

du

dt
= ADu + ARu , x ∈ Ω , t > 0 , (6a)

u = 0 , x ∈ ∂Ω , t > 0 . (6b)

where u ∈ RN and AD, AR ∈ RN×N . Using FS-DR with solution methods
S∆t = RR(∆tAR) and D∆t = RD(∆tAD), our discretized system is

u∗ = RR(∆tAR)un ,

un+1 = RD(∆tAD)u∗ ,
(7)

with un+1 satisfying the boundary condition. Eliminating u∗ gives

un+1 = RD(∆tAD)RR(∆tAR)un ,

or
un+1 = RFS-DR(∆tAD,∆tAR)un ,

where RFS-DR(∆tAD,∆tAR) = RD(∆tAD)RR(∆tAR). The condition for A-
stability is similar to that for the scalar ODE above:

‖RFS-DR(∆tAD,∆tAR)‖ ≤ 1 , 0 < ∆t ≤ ∆t∗ . (8)
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Here ∆t∗ is the time step limit due to stability. The A-stability criteria for other
operator-splitting methods such as Strang and Marchuk is similar. Results of
split schemes when AD and AR are negative definite can be found in [3], [5].

We are interested initially in A-stability for FS-DR, so we assume that AD +
AR is negative definite. For the systems we consider the matrix AD is a discrete
representation of a diffusion operator and thus is also negative definite with a
complete set of eigenvectors {φi}N

i with real negative eigenvalues λN ≤ · · · ≤
λ1 ≤ 0. This is the case, in particular, if AD arises from a finite element
discretization of a linear diffusion operator with Dirichlet boundary conditions.

We do not make any assumption about the reaction term, however, except
that AD +AR is negative definite. Thus, AR may have eigenvalues with positive
real part, so that the solution grows during the reaction step. In practice this
step is solved with an ODE integrator that is sub-cycled with very strict accuracy
tolerances, so it is reasonable to assume the step is solved exactly. The following
theorem shows the time step restrictions required for the FS-DR method to be
A-stable.

Theorem 1. Let Equation (7) be an operator-split time-discretization of Equa-
tion (6). Assume that

• AD + AR is negative definite;

• AD is normal with real negative eigenvalues, with λn ≤ · · · ≤ λ1 < 0;

Let νR(∆t) = ‖R(∆tAR)‖L2 . If the following condition holds:

max
i
|RD(∆tλi)| ≤ 1/νR(∆t) for 0 ≤ ∆t ≤ ∆t∗ ≤ ∞ , (9)

then the operator splitting method given by Equation (7) is stable, in the sense
that Condition (8) is satisfied.

Proof. Because AD is normal, RD(∆tAD) is also normal and

‖RD(∆tAD)‖L2 = max
i
|RD(∆tλi)| ,

Using Condition (9) with this relation guarantees

‖RD(∆tAD)‖L2 ≤ 1/νR(∆t) .

This gives

‖RFS-DR(∆tAD,∆tAR)‖L2 ≤ ‖RD(∆tAD)‖L2‖R(∆tAR)‖L2 ≤ 1 .

Hence, this splitting method is stable.

The situation simplifies if RD is monotonically increasing on (−∞, 0), which
is the case for many A-stable methods such as backward Euler and trapezoidal
rule, and even more so if RD is L-stable. Considering these simplifications, we
have
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Corollary 1. If RD is monotonically increasing on (−∞, 0), then Condition
(9) can be replaced by

max(|RD(∆tλ1)|, |RD(∆tλn)|) ≤ 1/νR(∆t) for 0 ≤ ∆t ≤ ∆t∗ ≤ ∞ . (10)

If RD is also L-stable, then Condition (10) simplifies to

|RD(∆tλ1)| ≤ 1/νR(∆t) for 0 ≤ ∆t ≤ ∆t∗ ≤ ∞ . (11)

Proof. By the monotonicity of RD(z), we have that for all j,

RD(∆tλn) ≤ RD(∆tλj) ≤ RD(∆tλ1) ,

so
max

j
|RD(∆tλj)| = max (|RD(∆tλ1)|, |RD(∆tλn)|) .

Thus, Condition (10) ensures that Condition (9) is satisfied.
If RD is also L-stable, then by its monotonicity and Condition (11) we have

0 ≤ RD(∆tλn) ≤ RD(∆tλ1) ≤ 1/νR(∆t) .

Thus, Condition (11) ensures Condition (10) is satisfied and that the method is
stable.

An additional advantage with L-stable methods such as backward Euler is
that, in the case where AD is a discretization of the diffusion operator, Con-
dition (11) can often be satisfied with a ∆t∗ that is independent of the spatial
discretization. For methods that are not L-stable, Condition (10) will not be
independent of the spatial discretization in general, however.

For Strang RDR, a similar analysis yields an amplification factor of

RStrang RDR = RR

(
∆t

2
AR

)
RD(∆tAD)RR

(
∆t

2
AR

)
.

The amplification factor from the diffusion step appears in RStrang RDR in a
similar manner as in RFS-DR. Thus, the analysis for Strang RDR proceeds
exactly as that for FS-DR.

We briefly discuss some terminology. The stability analysis above is for linear
problems. In this context, if the stability criteria are violated the numerical
solution will experience unbounded growth. Hence we refer to this behavior
as an instability. In the case of a nonlinear system growth can be modulated
and restricted. This modulated growth can lead to the appearance of spurious
modes in the solution.

Though not shown here, other operator-splitting methods exhibit instabili-
ties similar to those of Strang splitting, such as Romero splitting (see [13]) and
Peaceman-Rachford. For each of these methods, though, the contribution to the
amplification factor due to the diffusion operator can be viewed as being iden-
tical to the contribution RD to RFS-DR above when using trapezoidal rule for
the diffusion. Consequently, these methods have similar difficulties in damping
out high wave number modes.
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5 An Amplification Factor Spectral Decay Con-
dition

While Condition (9) ensures A-stability of FS-DR, we have no information about
the order of convergence of the method. Moreover, Theorem 1 does not require
that the amplification factor for the diffusion solver has the correct asymptotic
behavior. This could result in a solution where all the modes are stable but
with high wave number modes dominating the low wave number modes. This
motivates the following condition:

Condition 1. In addition to the conditions of Theorem 1, we also impose a
time step limit ∆̃t such that the following condition holds:

max
i
|RD(∆tλi)| = RD(∆tλ1) , 0 < ∆t ≤ ∆̃t . (12)

If RD is monotonic then this condition becomes

|RD(∆tλn)| ≤ RD(∆tλ1) , 0 < ∆t ≤ ∆̃t . (13)

If RD is monotonic and L-stable, then Condition (12) is automatically satisfied.

While this condition is not necessary for the stability of the operator-splitting
method, it does ensure that the low wave number mode is damped the least,
which is the behavior of the exact solution of the diffusion step. Also, the highest
wave number modes in a discretized problem often correspond to numerical
error, so it is reasonable that these modes should be damped more than the low
wave number modes.

Let us also consider the order of convergence. Assume that RD is consistent
of order p ≥ 1, i.e.,

RD(z) = ez + ρD(z) ,

where ρD(z) = O(zp+1) as z → 0. If Condition (12) holds, then we have

‖RD(∆tAD)‖ = max
i
|RD(∆tλi)| = RD(∆tλ1)

= e∆tλ1 + ρD(∆tλ1) ,

where we assume that ∆tλ1 small enough that the above expansion holds. Thus,
for our implementation of FS-DR, assuming that the reaction step is solved
exactly, we have

‖un+1‖ ≤ ‖RD(∆tAD)RR(∆tAR)un‖
= RD(∆tλ1)

∥∥e∆tAR
∥∥ ‖un‖

= e∆tλ1
∥∥e∆tAR

∥∥ ‖un‖+ ρD(∆tλ1)
∥∥e∆tAR

∥∥ ‖un‖ .

If un is composed primarily of low wave number modes, then the term on the
left will be a good approximation of the solution using FS-DR with exact com-
ponent operators. Because |λ1| is not large, the second term on the right side
is O(∆tp+1). By this heuristic argument, we expect that the numerical solution
will exhibit its asymptotic rate of convergence if Condition (12) is satisfied.
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6 A Simple Demonstration of A-stability Theo-
rem 1

We demonstrate the restrictions of Theorem 1 with a model problem, using
FS-DR splitting, solving the diffusion step with a single step of either backward
Euler (FS-DBER), trapezoidal rule (FS-DTRR), or one of two SDIRK methods
(FS-DS1R and FS-DS2R). The SDIRK, or singly diagonally implicit Runge-
Kutta, methods, more fully explained in the section 8, are a family of implicit
Runge-Kutta methods, with S1 being second-order and L-stable and S2 being
third-order and A-stable but not L-stable, both with amplification factors which
are monotonically increasing on (−∞, 0). Based on the analysis of the previous
section, we expect that operator-splitting methods will be stable as long as
Condition (10) is satisfied.

We consider a linear scalar equation and demonstrate the consequences of
the conditions of Theorem 1. The equation is

ut = uxx + αu , x ∈ [0, 1] , t > 0 , (14)

with the boundary conditions u(x = 0) = u(x = 1) = 0 and the initial condition
u(t = 0) = 4x ∗ (1 − x). The largest eigenvalue of the diffusion operator on
this domain is −π2, so if α < π2 the solution of this problem will decay to 0.
Initially we set α = 8.

We split this equation using FS-DR. The reaction term is solved exactly as
an ODE at each node. For the diffusion term we use linear finite elements for
the spatial discretization, with an element size of ∆x = 0.1. This results in a
coupled system of linear equations

ut = M−1Ku ,

with K being the discrete representation of the diffusion operator and M being
the mass matrix. For this discretization, the smallest and largest eigenvalues of
M−1K are λ1 = −9.951 and λN = −1116. We integrate this system using a
single step of backward Euler, trapezoidal rule, or one of the SDIRK methods.

We can graphically demonstrate the conditions for stability. In Figure 3 we
plot 1/‖R(∆tAR)‖ = exp(−8∆t) and RD(∆tλi) for the various methods. To
check Condition (10), we need to determine ∆t∗ such that the plots ofRD(λ1∆t)
and RD(λN∆t) are below the plot of e−8∆t for ∆t ≤ ∆t∗. For backward
Euler and SDIRK-1, because these methods are L-stable we only need to check
Condition (11). We see that this will hold for ∆t∗ ≈ 0.053 for backward Euler
and ∆t∗ ≈ 0.082. for SDIRK-1. Moreover, because these methods are L-stable,
Condition 1 is satisfied.

For the trapezoidal rule and SDIRK-2, we see that Condition (10) is violated
with RD(λN∆t), at ∆t∗ = 0.021 for trapezoidal rule and ∆t∗ = 0.048 for
SDIRK-2. The low wave number mode does not violate Condition (10) for
these methods. While these restrictions will allow these methods to be stable,
to satisfy Condition 1 we would require the stricter conditions ∆t ≤ 0.019 for
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Figure 3: Amplification factors for the diffusion terms compared to the recip-
rocal of the amplification factor for the reaction term. Dashed lines indicate
values of ∆t∗ while dash-dot lines indicate values of ∆̃t.
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trapezoidal rule and ∆t ≤ 0.040 for SDIRK-2. For this problem these values of
∆̃t are close enough to ∆t∗ that we do not make a distinction between them.

In Figure 4 a convergence study is presented for the model equation. We
integrate this problem from t = 0 to t = 2 using time steps ranging from
∆t = 0.2 to ∆t = 0.003125, and compute the error with respect to a reference
solution based on a Richardson’s extrapolation of the two solutions using FS-DR
with trapezoidal rule with the smallest ∆t. Note that the reaction and diffusion
operators for this problem commute, so for small ∆t the FS-DTRR and FS-
DS1R methods have second-order convergence, while the FS-DS2R method has
third-order convergence.

As with the Brusselator problem, for FS-DTRR there is a noticeable tran-
sition in the error. For ∆t ≤ 0.02 the error is small and the solution has the
expected second-order convergence. For larger ∆t, the error is large. This tran-
sition is also seen in FS-DS2R for ∆t > 0.05, as expected. For FS-DBER and
FS-DS1R the error for large enough ∆t is large, but there is no clear transition.

The reason for this can be seen in Figure 5, where we plot the product of
the amplification factors of the reaction and diffusion steps. For the FS-DBER
and FS-DS1R this product gradually changes from having slight damping to
having growth. The growth of the numerical solution, roughly maxiRD(λi∆t)×
exp(8∆t), is a smooth function. However, for FS-DTRR and FS-DS2R this
product initially decays with increasing ∆t but then abruptly starts to increase
with increasing ∆t.

Figure 6 shows the behavior of the numerical solution for using FS-DBER
and FS-DTRR with different time steps. For both FS-DBER and FS-DTRR, if
∆t < ∆t∗, as in (b) and (d), the solution has the correct behavior of damping,
though the damping occurs at different rates. For FS-DTRR, if ∆t > ∆t∗, as
in (c), the low wave number mode damps, but the high wave number modes
grow quickly. For FS-DBER, if ∆t > ∆t∗, as in (a), the low wave number mode
actually grows. Because the solution stays smooth it still looks “realistic” and
this instability may not be detected.

In general Condition (9) or Condition (10) is difficult to check, much less
determine a priori. Even for this simplified test case we use graphical means to
check them rather than solve the transcendental equations to which they give
rise. We can make some useful observations from this test case, though. If
Condition (10) is violated with low wave number modes, the solution changes
gradually from a low wave number solution that damps to one that grows, and
may appear to be physically correct. If Condition (10) is violated with high
wave number modes, the plot of the error will show an abrupt transition from
good convergence with low error to poor or no convergence with high error.

We have not made any explicit connection of ∆t∗ to the spatial discretiza-
tion. We have only assumed that the spatial discretization is at a fine enough
resolution so that the eigenvalues of AD +AR are in the left half-plane. For the
model problem this is the case; indeed, the largest and smallest eigenvalues of
AD are

λ1 = − 6
∆x2

(
1− cos(π∆x)
2 + cos(π∆x)

)
≈ −π2

(
1− π2∆x2

12

)
,
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and

λn = − 6
∆x2

(
1 + cos(π∆x)
2− cos(π∆x)

)
≈ − 12

∆x2

(
1− 3π2∆x2

4

)
.

Using this approximation for λ1 and evaluating Condition (11) for backward
Euler we have that in the limit as ∆x → 0, ∆t∗ ≈ 0.0507, with no dependence
on ∆x. For trapezoidal rule, however, using this approximation for λn and
evaluating Condition (10) gives ∆t∗ ≈ ∆x/2

√
6 in the limit as ∆x → 0.

For the choice of α = 8, the values of ∆t∗ and ∆̃t for FS-DTRR and FS-DS2R
are close together. To see more of a distinction between ∆̃t and ∆t∗ we consider
the same problem but with α = 1. Now the solution is strongly damped and
the range of ∆t for which FS-DR is A-stable is greater. The values of ∆t∗ for
FS-DBER, FS-DTRR, FS-DS1R, and FS-DS2R are 3.6, 0.060, 3.9, and 0.32.

The values of ∆̃t only depend on the diffusion operator, however, so they
are unchanged: 0.19 for FS-DTRR and 0.040 for FS-DS2R. Figure 7 shows the
relative L2 error of the various methods for this problem. The plot of the error is
identical to that of the previous problem. However, Condition (10) is much less
restrictive. Condition 1 is unchanged though. As argued earlier, for methods
lacking L-stability the condition ∆t ≤ ∆̃t appears to put the operator splitting
method in its regime of asymptotic convergence.

7 Stability of Operator-Splitting Methods: C-
stability

While A-stability is useful for systems with damping, it is not reasonable nor de-
sirable for systems with growth. Thus, we introduce an extension of A-stability
known as C-stability. A method applied to Equation (5) is C-stable if real num-
bers ∆t∗ and C exist such that |R(λ∆t)| ≤ 1 + C∆t for 0 < ∆t ≤ ∆t∗. This
type of stability will ensure convergence of the numerical solution at a finite
time t as ∆t → 0. See [2] for more discussion.

For problems of the form of Equation (5) it is not difficult to show C-stability
for many methods. For backward Euler and trapezoidal rule, since they are both
A-stable, if λ ≤ 0 we can set ∆t∗ = ∞ and C = 0. If λ > 0, then for backward
Euler we choose ∆t∗ < λ and set C = λ/(1 − λ∆t∗). Similarly for trapezoidal
we choose ∆t∗ < 2/λ and set C = λ/(1− λ∆t∗/2).

Again, the benefit of C-stability is that it can be applied to problems in which
the solution grows rather than decays. Thus we consider Equation (6) with
AR+AD indefinite. We still assume that AD is a negative definite approximation
of the diffusion operator with real negative eigenvalues λi as before, but we allow
the eigenvalues of AR to be large enough that the combined system may have
positive eigenvalues. If we apply the FS-DR method to this system, then the
corresponding C-stability condition is

‖RFS-DR(∆tAD,∆tAR)‖ ≤ 1 + C∆t , 0 < ∆t < ∆t∗ . (15)

We can then develop a theorem similar to Theorem 1.
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Theorem 2. Let Equation (7) be a time-discretization of Equation (6). Assume
that

• AD is normal with real negative eigenvalues, with λn ≤ · · · ≤ λ1 < 0;

Let νR(∆t) = ‖R(∆tAR)‖L2 . If the following condition holds:

max
i
|RD(∆tλi)| ≤ (1 + C∆t)/νR(∆t) for 0 ≤ ∆t ≤ ∆t∗ ≤ ∞ , (16)

then the operator splitting method given by Equation (7) is C-stable, in the sense
that Condition (15) is satisfied.

The proof of this theorem is identical to that of Theorem 1, multiplying
the right side of the inequalities by 1 + C∆t. Similarly, the following corollary
parallels corollary 1.

Corollary 2. If RD is monotonically increasing on (−∞, 0), then Condition
(16) can be replaced by

max(|RD(∆tλ1)|, |RD(∆tλn)| ≤ (1 + C∆t)/νR(∆t) for 0 ≤ ∆t ≤ ∆t∗ ≤ ∞ .
(17)

If RD is also L-stable, then only Condition (17) simplifies to

|RD(∆tλ1)| ≤ (1 + C∆t)/νR(∆t) for 0 ≤ ∆t ≤ ∆t∗ ≤ ∞ . (18)

In this case where the solution grows, Condition 1 is very helpful. Without
it, unphysical high wave number modes can grow faster than the physical low
wave number modes and pollute the solution.

One drawback with using C-stability as a time step control is that there
is often no clear choice for C. A reasonable choice could be a norm of the
Jacobian of the right side of the original equation, so in the case of Equation
(6), C = ‖AD + AR‖, for a suitable choice of norm. However, even in the case
of a scalar problem using backward Euler for diffusion and an exact solution
for the reaction, no value of ∆t will satisfy the C-stability condition with this
choice of C. Thus, consideration of both the problem and the numerical method
is required for a suitable choice of C. As with negative definite systems the
stability of indefinite systems also requires bounds on the high and low wave
number amplification factors. In addition the spectral decay condition can be
applied in this context as well.

8 The Brusselator Problem Revisited

Here we revisit the Brusselator problem, using the new stability results of the
last section. In the numerical experiments, the Strang RDR split method is
implemented, with the SDIRK methods applied to the diffusion step. Since the
right side of this system is not a negative definite operator, corollary 2 applies.
We expect the solution to be stable to high frequency perturbations either if the
solver for the diffusion step is L-stable or if the time step is sufficiently small.
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SDIRK methods are a one-parameter family of methods for solving the equa-
tion ut = f(t, u) by advancing from un to un+1 with a time step of ∆t by

k1 = f(t + γ∆t, un + γ∆tk1) ,

k2 = f(t + (1− γ)∆t, un + (1− 2γ)∆tk1 + γ∆tk2) ,

un+1 = un +
∆t

2
(k1 + k2) .

To avoid a negative time step we choose γ ≥ 0. See, e.g., [4].
These methods are at least second-order accurate for all values of γ, but the

behavior of the amplification factor varies considerably. For these methods the
amplification factor is

RSDIRK = [I − γ∆tA]−2 [
I + (1− 2γ)∆tA + (γ2 − 2γ + 1/2)∆t2A2

]
.

Analysis of the amplification factor shows that these methods will be A-stable
if γ > 1/4, and that R(z; γ) is monotonically increasing for z ≤ 0 if γ > 1/3. A
popular choice of γ is 3+

√
3

6 , since the method then becomes third order. While
the method is A-stable for this value of γ, it is not L-stable, and in fact the
amplification factor tends to − 6(1+

√
3)

(3+
√

3)2
≈ −0.7321 for large ∆t. For γ = 1± 1√

2
,

the method is L-stable; additionally, for γ = 1 + 1√
2

the amplification factor
is monotonically increasing. In addition to these values of γ we also consider
γ = 1/2, for which the amplification factor tends to −1 for large ∆t. For this
value the method is equivalent to the midpoint rule to leading order.

In Figure 8 we plot the solution at t = 32 with ∆t = 1.6 = 0.13τ with three
different values of γ: 1 + 1√

2
, 3+

√
3

6 , and 1/2. For γ = 1 + 1/
√

2 the solution is

smooth and well behaved, while for γ = 3+
√

3
6 the solution has developed some

spatial oscillations. For γ = 1/2 the solution has developed very jagged spatial
oscillations and is clearly unacceptable.

In Figure 9 we plot the temporal convergence at t = 80 = 6.7τ for Strang
splitting using SDIRK for diffusion with the three different values for γ. For γ =
1+ 1√

2
the convergence is good for all values of ∆t. For γ = 3+

√
3

6 convergence is
stalled only for the largest two values of the time step, and we have second order
convergence for ∆t ≤ 0.8 = 0.067τ . For γ = 0.5, however, the convergence is
poor for a wide range of ∆t, and the requirement for second-order convergence
is ∆t ≤ 0.0125 ≈ 1×10−3τ . Note that, because the operators in the Brusselator
problem do not commute, using the third-order SDIRK method does not result
in third-order convergence for the Strang RDR method for small values of ∆t.
It does, however, improve the accuracy of the solution, since the error due to
the diffusion component is no longer at leading order.

As predicted by corollary 2, when the diffusion operator is solved with an
L-stable method, the method is stable to high wave number instabilities. If the
method for diffusion is not L-stable, then a time step restriction is required.

In [15] the instability is also controled by using an L-stable integrator for
the diffusion, though no analysis is presented. Also, the integrator used for the
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diffusion step, a combination of trapezoidal rule and BDF-2, is not monotonic.
Thus, by the theory presented here, the SDIRK method with γ = 1 + 1/

√
2

holds some advantage as a method for the diffusion step.
Next we consider the effect of Condition 1 on the Brusselator problem using

FS-DR. This condition prevents high wave number modes from dominating low
wave number modes. Applying this condition with trapezoidal rule for the
diffusion step to get a time step condition gives∣∣∣∣1 + 1

2λn∆t

1− 1
2λn∆t

∣∣∣∣ ≤ ∣∣∣∣1 + 1
2λ1∆t

1− 1
2λ1∆t

∣∣∣∣ .

We assume that the amplification factor is negative for ∆tλn and positive for
∆tλ1 and arrive at the condition

∆t ≤ 2√
λ1λn

.

Because the solution has Dirichlet boundary conditions and has a domain
of unit length, λ1 is closely approximated by min(D1, D2)π2 ≈ 0.2467. Because
the spatial discretization uses linear finite elements, λn is closely approximated
by max(D1, D2)(12/∆x2) = 0.3/∆x2. Thus, the time step condition is

∆t ≤ ∆̃t =
∆x

π
√

3 maxi Di mini Di

≈ 7.351∆x . (19)

We check this for Strang RDR using grid spacings of ∆x = 0.008, 0.004, 0.002,
0.001, and 0.0005.

Figures 10 and 11 show the temporal convergence of Strang RDR and Strang
DRD for these values of ∆x. There is very good agreement with the computed
values of ∆̃t and the values of ∆t below which these methods are convergent.
The values of ∆̃t shift to the right in the Figure 11 because Strang DRD has
two half-steps of the diffusion solve per time step rather than one full-step as in
Strang RDR.

9 Conclusion

In this paper we have presented an analysis of the stability of operator-splitting
methods for systems with indefinite operators, including negative definite sys-
tems with an indefinite component operator and indefinite systems. The results
of this analysis have demonstrated the importance of the spectral decay prop-
erties of the amplification factors for the integration of the diffusion operator.

These results were used to explore the convergence problems experienced
by some operator split methods when solving the Brusselator problem. We
have shown experimentally that if the method used for the diffusion step is not
L-stable, such as trapezoidal rule or certain SDIRK methods, the time step
will have an upper bound above which the convergence will be poor. This
observation is confirmed by the stability analysis which proved that for a linear
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Figure 10: Brusselator temporal convergence of Strang RDR at t = 80 ≈ 6.7τ
for various values of ∆x. Dotted lines indicate values of ∆̃t/τ computed using
Equation (19) (τ = 12).
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problem, if the method for the diffusion step is not L-stable and the time step
exceeds some limit, then high wave number modes will pollute the solution.

This analysis also demonstrated that a time step condition may be required
even if the method for the diffusion step is L-stable, but in this case the transition
from poor or no convergence to good convergence is not as dramatic because
here it is low wave number modes which pollute the solution. However, in
contrast to the high wave number instability, which is very clearly identifiable,
this low wave number instability is more subtle. These low wave number modes
could appear to be physically realistic and not easily identified as instabilities.

Finally, the use of the trapezoidal rule is popular within operator split meth-
ods; however, this work demonstrates that it should be used with caution or the
convergence may behave disastrously. Future work will develop a time step con-
trol procedure based on the observations here so that methods which are not
L-stable may be safely used within operator split methods.
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